

Chemistry Learning In Progress

Design Specifications Document

Nathan Mikeska
Neil Alfredson
Richard Carney
Brian Navarro

1

Table of Contents

1. Introduction 2

1.1 Purpose of the System 2
1.2 Design Goals 2
 1.2.1 Dependability Criteria 2
 1.2.2 Performance Criteria 2
 1.2.3 Maintenance Criteria 3
 1.2.4 End-user Criteria 3
 1.2.5 Design Tradeoffs 3
 1.2.6 Lifecycle 4
1.3 Definitions, acronyms, and abbreviations 5
1.4 References 6

2. Proposed System 6
2.1 System Overview 6
2.2 System Decomposition 6
2.3 Hardware/Software Mapping 7
2.4 Persistent Data Management 7
2.5 Access and Control Security 8
2.6 Global Software Control 8
2.7 Boundary Conditions 8

3. User Interface 9
4. Subsystem Interfaces 15
5. Packages and File Organization 16
6. Class Diagram 17
7. Testing 19
8. Glossary 23

2

1. Introduction

 1.1 Purpose of the System

The purpose of this system is to provide students with an
automated version of the current system. Therefore, this educational
tool will have to retain the same objective of allowing a user to arrange
freely a given set to form the patterns that make up the final
arrangement. Each set in one way or another reflects the one of many
ways the periodic table can be organized.

Furthermore, beyond mimicking the current system, we aim to

provide observational data that shows the choices a user made toward
finding a final arrangement for a set. This recorded data will help
illuminate the various thought processes that occur for the user during
their task of finding patterns within a set.

 1.2 Design Goals
 The primary design goals of this system are:

 1.2.1 Dependability criteria:

Reliability – The system must accurately handle and display
information to the end user.

Security – The system must be secured against unauthorized
users modifying a user’s local hard drive and it must properly
inform the user of the need to read/write their hard drive.

Robustness – The system should perform error checking on all
inputs in order to catch invalid inputs and deal with them in
such a manner to prevent the program from crashing or
disrupting the user’s work. An example would be preventing
the user from loading up a file for playback that is not actually a
log file created by the system.

Availability – The system should be accessible to students and
professors. It may also be used by other teachers and possible
common non-related users.

 1.2.2 Performance criteria:

Response time – The system should take less than one minute to
download to the user’s PC on a dialup connection. Once the

3

system is downloaded to the user’s local PC, it should respond
to all user input without any visible delay.

 1.2.3 Maintenance criteria:

Modifiability – The system needs to be designed and
implemented in an efficient object oriented manner in
anticipation of any interface or functional application updates to
the system.

Readability – The system layout, design, and code needs to be
easy to navigate and understandable by any developer who
would later be modifying the code or adding additional features.
This can be accomplished by utilizing clear coding standards and
module descriptions.

 1.2.4 End User criteria:

Usability – The system should be usable to a wide range of users
from novice to expert, and should be intuitive.

 1.2.5 Design Tradeoffs

 This project we as designers needed to consider several
different design tradeoffs. A main tradeoff that we needed to
consider and work around is tile size vs. screen size. We needed
to keep the tiles large enough so that all of the information on
each tile could be seen at one time. This caused some conflict
because the larger and clearer the tiles were the less of them we
could display on the screen at once. The size of the tiles also
brought up conflicts with the size of the grid area. We needed the
grid area to be large enough to accommodate the patterns of the
set. The patterns could be several tiles long or high. We could
not afford to make the tiles smaller so we needed to add the
functionality of the scrolling grid area to accommodate all
different kinds of patterns. The tradeoff to make the grid larger
then can be displayed at once forced us to trade the simplicity of
our program and add a way to see the entire pattern at once by
means of a mini-map.

The use of java is another design tradeoff that our group
needed to make. We needed to consider the difference between
functionality and the learning curve associated with learning the
new language. The time that it takes to learn java was weighed
against the need for additional functionality and the deadline we

4

had for our project. After deciding to use the java language we
had to determine the pros and cons of using an applet vs.
application. The applets ability to be online-based and used from
a web browser made us try to develop with applet in mind.
However, do to the need to sign the applets in order to read and
write to files we needed to change our program so it would be an
application. The requirement that the program be available online
now means that they need to download the application from a
website.

Security was a main consideration of the group. We
needed to determine who we should allow to use the system and
what we would allow them to do. The security of the system was
sacrificed in order to make the program available and ease of use.
We decided that instead of trying to keep the application secure
by requiring a logon or some password we would allow all users
to use the program. We also decided that we would allow the
students and teachers to have the same access to the functionality
of the program. This allowed us to only worry about developing
a single interface for all users. Another security tradeoff that we
needed to worry about was the submission of the results. We
could have allowed the program to submit all the results to the
professor, however this could lead to many complications for the
professor due to users of the system that are not in her class.
This would also complicit allowing other professors to use the
system. So we decided that it would be better to have the
submission of the results to the professor separate from the
program. This means that the student could email the recoded
file to the professor or give it to her on a disk. Another option
that was explored was the use of Blackboard to turn the
assignment into the teacher. The teacher could also tell the
students that they need to print out a copy of there final results
and turn in the printout. The printing functionality in the
program allows the user to print tile arrangements, print
additional tile information, or print to image files.

1.2.6 Lifecycle Model

5

The lifecycle model that we will use for the entirety of
project will be the waterfall model. However, within our coding
and testing phases, we will gear our model to a more
evolutionary prototyping approach.

Given the small team size and project milestone deadlines,
the waterfall model provides a solid lifecycle that we can follow
without needing to make compromises to our goals or deadlines.
During the coding and testing phases of the lifecycle, our project
will take an evolutionary prototyping approach. It is very
important that the system be easily understood and used by the
users. This will require a strong focus on providing a good user
interface for users to interact with the system.

Therefore, the evolutionary prototyping will allow us to
gather important feedback on each iteration of the prototype so
that we may provide the best possible interface for the users.

 1.3 Definitions, acronyms, abbreviations

C.L.I.P - Chemistry Learning In Progress
Professor (teacher) – A user that accesses the system from the
perspective of a certain role. This role includes the use of the playback
and creation functionality.
Student – A user that accesses the system from the perspective of a
certain role. This role includes the use of the tile arrangement
functionality.
User – Every user has access to the entire functionality of the system.
Generally a user fulfills the role of a professor or student as defined
above.

6

1.4 References

 Our Website
 http://www.cs.siue.edu/seniorprojects/2005/fall/CLIP/

2. Proposed System Architecture

 2.1 System Overview

Complete System

Tile Arrangement Module

 2.2 System Decomposition

7

There are 4 main modules that make up our system. They are
the Tile Arrangement module, Record module, Playback module, and
Data module.

Tile Arrangement Module

The Tile Arrangement module can be broken down into 5 main
components: the User Interface, User Interaction, Grid, TileBin, and
MiniMap. The User Interface contains the Grid, TileBin, and
MiniMap as well as the other components that make up the overall
user interface of the application. The User Interaction component
handles all interactions the user makes with the interface, Grid,
TileBin, and MiniMap. The Grid component is the grid in which tiles
are arranged upon. The TileBin component holds all tiles not
currently on the Grid. The MiniMap provides an overview of the
Grid as well as a convenient way to move around in the Grid.

Record Module

The Record module logs all moves and significant events that
occur during the arrangement of tiles. If and when the user decides to
save his or her arrangement, the Record module handles the saving of
the log file.

Playback Module

The Playback module is responsible for loading up and
allowing the user to view log files. The Playback module implements
a control panel with various controls used to examine the log. It also
has the ability to auto-playback logs.

Data Module

The Data module contains the interface and functionality
needed for the user to create or modify tile sets.

 2.3 Hardware/Software Mapping
The CLIP system is available for download online and requires

that the user have Java. A .jar file will hold the application and will be
stored on a server. Once downloaded, the application can be executed
and used on the user’s local PC.

 2.4 Persistent Data Management
 The Clip system will utilize the following files:

8

 Log file

The log file will store the list of moves made by the user. During
playback, this file will be read by the system in order to play back the
user’s moves. The log files also include the entire tile set associated
with them.

 Rule Set file

The rule set file will store rules and options that define a tile set.
Information to be stored consist of set name, set description, tile size,
ability to add a blank tile, and randomly remove tile. The rule set files
also include information about the grid size, overall comments, and
unused tile information. By using serializable class it also holds all of
the images and information about each of the tiles.

 Image files

The image files are the GIF, PNG, or JPG images used to
represent the tiles.

 2.5 Access Control and Security

CLIP is an online system that is accessible to anyone with an
internet connection and java. There will be no restriction on the
systems functionality regardless of the user.

 2.6 Global Software Control

The system is event driven. The actions taken by the users either
by dragging/dropping a tile, pressing a command button, or selecting
menu option, will determine which sub system is activated. If there is
no action taken by the user then system is idle.

 2.7 Boundary Conditions

 Initialization
The system will be a java application. There will downloadable jar

file to be hosted at a location of our client’s choice and accessible to
users. It will allow the user to save their work as individual files to
their own computer and also allow users to view the playback given a
saved file.

 Termination

The system will be shut down by exiting the application.

9

 Failure

After an unexpected client side failure, the system will display a
brief, descriptive error message to the user before termination.

3. User Interface

The User Interface of the C.L.I.P system is important in recreating
the look and feel of current system’s physical environment. Furthermore,
our system also focuses on providing ways to easily create/modify tile sets,
load existing tile sets up for use in tile arrangement, and allow for easy play
back of previously done tile arrangements. There is also the ability to print
information.

Main Screen – Initial Look
After the application has successfully loaded, the main screen will

appear. This screen will contain a menubar, an empty grid, the minimap,
and an empty tile listing.

10

Open Tile Set Dialog
In the file menu, a user will select open and choose tile set after

which an open tile set dialog will appear. The dialog will display a listing of
preloaded sets. These are the sets that are available already with the
application. The user also has the option to browse for additional sets that
may be located elsewhere such as on the computer's hard drive.

Main Screen – Tile Set Loaded

After the user has selected a tile set, its contents will be loaded into
the tile listing to the right of the grid. The order of the tiles will be random
and different each time a set is loaded.

11

Create Set – Rule Editor, Tile Editor

When a user wishes to create a new set, they can select from the
menu bar, Tools -> Create Set. A Create Set dialog will appear with 3 tabs.
In Basic Options, the user needs to provide information about what the
name of the set will be, the instructions of the set, the size of the tiles the
set will use, and the size that they want the grid to be. In Advanced
Options, the user chooses what options they want the set to use including
options for blank tiles, unused tiles, randomly removing tiles. The Tiles tab
allows a user to start adding tile images to the set they defined under the
rule editor. The rule editor outlines all the characteristics that define a
certain set.

12

13

14

Insert Blank Tile
For some sets it is allowable to add blank tiles that take the place of

tiles that are not in the set, but that the user believes need to be in order to
fill in the gaps in their arrangement. To add a blank tile, a user will select
from the menu bar Tools-> Add Blank Tile and a dialog with appear. In
this dialog, the user will describe the characteristics of the missing tile. The
user can also right click and get the option to add a blank tile from a popup
context menu. The red fields are those that are required based on the rules
of the set.

15

4. Subsystem Interfaces

Tile Arrangement Module
The key line of communication in the Tile Arrangement module is

the User Interaction component. The User Interaction component handles
all communication between all the components that make up the Tile
Arrangement module. This means that the Grid, TileBin, and MiniMap
don’t need to directly communicate with each other. Externally, the User
Interaction component sends information to the Record module to be
recorded and later saved as a log file.

Record Module

The Record module receives information from the User Interaction
module. Other than receive information from the Tile Arrangement
module, this module has no need to communicate or send information to
other modules.

Playback Module

This module sends information to the Tile Arrangement module.
The information being sent is commands to do specific things related to
the current log entry being executed.

Data Module

16

The Data module has no need to communicate with the other
modules since its only purpose is to create and modify tile sets.

5. Packages and File Organization

Set Files
The set files are sets of picture files that are to be loaded by a user to

be arranged on the grid. The system will begin with several different sets of
tiles for use by the users. To allow the expansion of the program the
system can have additional tile sets created. The set file will store a list of
tiles. This file will be created from create set item in the tools menu. The
rule set file has all of the information about a specific set. It has all of the
options that are enabled or disabled in the set, such as the ability to leave
out tiles, add blank tiles, and randomly remove tile. This file will also store
the information about tile size, the name of the set, and the description and
rules associated with the set. This file will be made when a user creates a
new set. This is through the create set option in the tools menu. The user
selects the option that should be enabled in the new set and the name and
description of the set. This file can be edited by the modify set option in
the tools menu.

Log Files

The log file stores information about all of the moves that were
made including all of the blank tiles that were added while the user was
using the program. This file will be created when the user is in arrangement
mode and saves a file. The user can select two different save options
Complete Tile Arrangement or Incomplete Tile Arrangement. If Complete
Tile Arrangement is chosen the user could be presented with some dialog
boxes where the user can provide description for their arrangement and
unused tiles before the save file dialog box pops up. The menu will pop up
a save file dialog box and allow the user to save the file to the local hard
drive. This file will also be used in the Playback mode for file reading. The
file will be accessed when the user selects the Open and chooses Tile
Arrangement. The program will read all of the moves that are saved on the
file and display them one at a time. All entries will be time-stamped with
the time (hours:minutes:seconds) since the last action. The user can also
use log files to continue from where they left off by choosing Continue
Tile Arrangement from the open menu.

The file will have 12 different moves:
TILEBIN_TO_TILEBIN
TILEBIN_TO_GRID

17

GRID_TO_GRID
GRID_TO_TILEBIN
ADD_BLANK_TILE
EDIT_BLANK_TILE
REMOVE_BLANK_FROM_GRID
REMVOE_BLANK_FROM_TILEBIN
CHANGE_TILEBIN_WIDTH
ADD_BLANK_TILE_TO_GRID
SAVE_LOG
LOAD_LOG

TILEBIN_TO_TILEBIN when a tile moves from the tile bin to

a different place in the tile bin. TILEBIN_TO_GRID when a tile moves
from the tile bin to the grid area. GRID_TO_GRID when a tile moves
from the grid to a different position on the grid. GRID_TO_TILEBIN
when a tile is moved from the grid to the tile bin. ADD_BLANK_TILE
when the user has added a blank tile. EDIT_BLANK_TILE when the
user has edited a blank tile. REMOVE_BLANK_FROM_GRID and
REMOVE_BLANK_FROM_TILEBIN is when the user deletes one of
the blank tiles that had been added. CHANGE_TILEBIN_WIDTH
when the user has changed the size of the tile bin.
ADD_BLANK_TILE_TO_GRID is what happens when the user adds
a blank tile to the grid area via context menu. SAVE_LOG is when the
user saves the arrangement that they currently have. LOAD_LOG
happens when the user loads up an existing file in arrangement mode.

Image Files

The image files are the *.png, *.jpg, or *.gif files that have the image
of tiles on them. These are what will be used to display the information for
the tile to the user. The user must create or find their own files for this
purpose.

6. Class Diagram

18

19

7. Testing

Module Testing
As detailed by the lifecycle model our coding and testing phases will

follow an evolutionary prototyping approach. Therefore code will be
written onto the latest approved version of the prototype. This eliminates
the need for imitation drivers or stubs as the modules completed will be
tested using the latest accepted version of the prototype. An example of
this would be the testing of the playback module.

Integration Testing

Once members have finished coding and testing the individual
modules that they are working on, the code will be written into the main
prototype. Even though members will be using their own copy of latest
version of the prototype while writing their code, it is not unreasonable to
expect that different modules will be coded by different team members
concurrently. Therefore this testing is to assure that the code being
written into the main prototype is compatible with another member’s code
and previously coded modules. An example of this would be testing the
integration between the grid, tile arrangement, and playarea modules by
moving a tile from the play area and placing it in the grid. The result
would be immediately visible on the screen. The result can also be
checked by looking at the log file created if the save arrangement button is
clicked after the move.

System Testing

In our evolutionary prototyping development the system test will be
a complete test over the systems expected functionality with the modules
it contains at the time of testing. Since module and integration testing will
be performed first, system testing is the last test to be performed before
the prototype is advanced to the next acceptable version. This will be the
version that the members will use as the driver to their new modules. The
actual testing will consist of a repetition of all the module testing and
integration testing that has taken place between version upgrades. System
testing has been performed numerous times and the complete system is
then checked for more bugs do to conflicts in the code.

Acceptance Testing

20

After most of the functionality had been added to the system we
began acceptance testing. This testing the team observed 14 selected
students using the system in the HCI lab. This helped us refine our system
and come up with better interface.

Task Oriented

During these tests the user was seated next to a team
member in front of a computer running the system. The other
team members will be in the other room of the HCI lab operating
the cameras, VCR, and observing the test. The team member
leading the test and next to user will be asking the user to perform a
series of specific tasks on the system

These tasks to be performed are:
- open the application
- load the first tile set into the tile bin
- reorganize the play area by taking the third tile and placing
it in the first spot

- move all of the tiles to any locations on the grid
- arrange the tiles on the grid in the most logical
arrangement according to the student

- move a specific tile from the grid to the tile bin
- add a blank tile to the set of tiles
- save the final arrangement of the grid
- fill in the pop up form asking why they left the tile placed
back into the tile bin out of the final arrangement

- open the recording the user submitted earlier
- move ten steps forward
- move a step backward
- auto play the rest of the moves till the last recorded move
- modify a tile set by adding another tile
- modify the same tile set by removing a different tile from
the tile set

- create a new tile set from images preloaded onto the
computer

- create a new best arrangement pattern for the new tile set
- adjust the rules of the new tile set to not allow students to
input blank tiles

- adjust the rules of the new tile set to not allow students to
add new best arrangement patters

- turn off the gridlines

21

During these sessions will be focusing primarily on the

use of the system through the perspective of the student.
However, to fully test all aspects of our system we had the
students perform the tasks that relate to the teachers role such
as the playback of arrangements and tile set modifications.
The team will record any mistakes the user makes, as well as
their response as to why they made the mistake, while
performing the tasks. Examples of mistakes may include
clicking on the wrong menus or moving the tiles to wrong
locations. We will also be keeping track of the time it takes
the student to complete the task. From these tests we hope to
discover any problems with interface that prevents the
students from accessing the functionality of the system.

Acceptance Testing II
User: Chemistry Professor

The tasks to be performed are:

- the same tasks as students

These sessions will primarily focus on the use of the
system through the role of the teacher. However they will
need to complete the tasks the students have, because their
understanding of the systems is more complex. The teachers
will be evaluated and observed the same way as the students.
During these tests we hope to locate any misunderstandings
the teachers may have due to the interface organization.

Open Environment

These tests were conducted similar to tests above. However
the user was not be asked to perform or be guided through specific
tasks. They were given a brief description on the purpose of the
system and be asked to simply use it. While they are guiding their
way through the system the lead tester asking them questions about
the language of the menu options, size of the forms, difficulty of
scrolling, difficulty of using the mini-map, colors of the forms,
visibility of the information on the tiles, organization of the menus,
and overall comfort with using the system. From these tests we

22

hoped to discover anything in the interface that is unappealing to
the users.

Online Testing

In addition to all of the user sessions that we are doing we
also had an online version of our current working prototype that is
available for anyone to use. We then gave visitors to the website a
series of tasks and several different questioners. One of the benefits
of doing this was to get professors that didn’t have time to go to
user sessions feedback about our program. This was important in
helping us get as much feedback as we could, including information
about users of different platforms and settings. Many of the tasks
that were asked of the online participants were the same as those
for the user testing.

23

8. Glossary

Version # Date Author Description

0.1 10/05/05 Brian Navarro User Interface Design, Research Topics
 10/06/05 Neil Alfredson Purpose of the System, Design Goals

(Except for Lifecycle model), Boundary
Conditions, Packages and File
Organization

 10/07/05 Nathan
Mikeska

Lifecycle model, System Decomposition,
and System Overview

0.2 10/08/05 Richard Carney Global Software Control, Access Control
and Security, Persistent Data
Management, Hardware/Software
Mapping. Revised the System Overview.

 10/08/05 Brian Navarro More User Interface Design, Web Page
Content Description, and Research
Topics.

 10/08/05 Nathan
Mikeska

System Decomposition (Revised),
Subsystem Interfaces, Class Diagrams.

 10/08/05 Neil Alfredson Testing
0.3 10/09/05 Brian Navarro Design Specification Document

Formatting, References
0.4 10/09/05 Nathan

Mikeska
Class Diagram

1.0 10/09/05 All Members Minor grammar and spelling fixes.
Reviewed by team and accepted as version
1.0

1.0 - 1.3 10/09/05
12/07/05

All Members Thorough revision of entire document.
Most sections updated

2.1 4/22/06 Neil Alfredson Updated document from first semester to
bring it up to date with the final product.

2.2 4/28/06 Nathan
Mikeska

Minor updates and changes.

